GLOBALSAT GPS Engine Board

Hardware Data Sheet

Product No : EB-5662RE

Version 1.0

APPR

Ray

Globalsat Technology Corporation16F., No. 186, Jian-Yi Road, Chung-Ho City, TaipeiHsien 235, TaiwanTel: 886-2-8226-3799Fax: 886-2-8226-3899E-mail : service@globalsat.com.twWebsite: www.globalsat.com.twWebsite: MWW.globalsat.com.twCHECKPREPARE

Luwalk

2011/7/8

Issue Date

Product Description

Product Description

EB-5662RE GPS module features high sensitivity, low power and ultra small form factor. This GPS module is powered by SiRF Star IV, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. With SiRF CGEE (Client Generated Extended Ephemeris) technology, it predicts satellite positions for up to 3 days and delivers CGEE-start time of less than 15 seconds under most conditions, without any network assistance. Besides, MicroPower Mode allows GPS module to stay in a hot-start condition nearly continuously while consuming very little power. EB-5662RE is suitable for the following applications:

- Automotive navigation
- Personal positioning
- Fleet management
- Mobile phone navigation
- Marine navigation

Product Features

- SiRF Star IV high performance GPS Chipset
- Very high sensitivity (Tracking Sensitivity: -163 dBm)
- Extremely fast TTFF (Time To First Fix) at low signal level
- Support UART/I2C interface(Default UART)
- Built-in LNA(with in CHIP)
- Compact size (22.4mm x 17mm x 3.0mm) suitable for space-sensitive application
- One size component, easy to mount on another PCB board
- Support NMEA 0183 V3.0 (GGA, GSA, GSV, RMC, VTG, GLL, ZDA)
- Support OSP protocol
- MEMS Support : 3-axis Magnetometer for compass heading for "Point and Tell" feature
- MicroPower Mode(MPM) : Reduce MPM current consumption from <500 uA to < 125 uA</p>
- Support SBAS (WASS, EGNOS, MSAS, GAGAN)
- Active antenna detect

Product Block Diagram

15 16 17 18 19 20	EB-5662RE	14 13 12 11 10 9
21 22 23 24 25 26 27 28		8 7 6 5 4 3 2 1

PIN Number(s)	Name	Туре	Description	Note
1	DR_I2C_DIO	I/O	DR I2C Interface.	4
2	DR_I2C_CLK	I/O	Support MEMS Sensor , 1.8V Level	4
3	TXD	0	O This is the main transmits channel for outputting navigation and measurement data to user's navigation software or user written software. Output TTL level, 0V ~ 2.85V.	
4	RXD	I	This is the main receive channel for receiving software commands to the engine board from SiRFdemo software or from user written software.	1
5,6	VCC	Р	Main power supply to the engine board.	
7,13,14,15,17	GND	Р	Ground.	
8	VDD3V3OUT	0	Output voltage 3.3V	
9,12,21,22,23, 24	NC		NC	
10	RESET	I	I System reset (active low)	
11	VBAT	Р	Backup battery supply voltage	
16	RF IN	RF	GPS antenna input	
18	VCC_RF	0	Supply Antenna Bias voltage (V=VCC)	

19	V_ANT	I	Antenna Bias voltage			
20	V-ANT_DET	I	I This pin is Active Antenna detect signal input			
25	ON_OFF	Ι	ON_OFF pin is used to command the EB-5662RE to turn on or off			
26	WAKE_UP	0	O System power on, 1.8V output .			
27	EXTINT		External Interrupt			
28	TIMEPULSE	0	One pulse per second output.(1PPS)			

<Note>

- 1. GPIO is 1.8V Level
- The ON_OFF pin commands the EB-5662RE ON or OFF. The turn ON command is a hardware feature of the Power Control FSM when sensing a rising edge on the pin. The turn OFF command is a software feature based on interrupts related to rising and/or falling edges and/or sensing of pin levels.
- 3. The WAKE_UP pin is an output from the EB-5662RE used to enable an external PMIC. A low on this output indicates that the EB-5662RE is in one of its low-power states (KA-only, Hibernate, or Standby mode) and requires no more than 60µA of current on the VIO_18 input. A high on this output indicates that the EB-5662RE is in operational mode requiring an external regulator to provide enough current on both the VIO_18 and VREG_18 inputs to handle the peak current requirements of the EB-5662RE.
- 4. The DR mode I2C interface provides support for dead reckoning (DR) and code upload. The port has 2 pins, DR_DIO and DR_CLK, both pins are pseudo open-drain and require pull-up resistors on the external bus.

Electrical Specification

Absolute Maximums Ratings

Parameter	Min.	Тур.	Max.	Conditions	Unit		
POWER Supply	POWER Supply						
Main power supply(VCC)	3.1	3.3	3.5		V		
Backup battery supply	2.0		3.5		V		
Main power supply Current	45	50	55	GPS is not 3D Fixed.	mA		
Backup battery supply Current	35	38	45	GPS is 3D Fixed.	uA		
RF POWER Supply		VCC			V		
RF Input	RF Input						
Input Impedance		50			Ω		
Operating Frequency		1.575			Ghz		

DC Electrical characteristics

Parameter	Symbol	Min.	Тур.	Max.	Conditions	Units
High Level Input Voltage	Viн	0.7*VCC		3.6		V
Low Level Input Voltage	VIL	-0.4		0.45		V
High Level Output Voltage	Vон	0.75*Vgcc		Vgcc		V
Low Level Output Voltage	Vol			0.4		V
High Level Output Current	Іон		2			mA
Low Level Output Current	lol		2			mA

Vgcc is SiRF Star IV Chip power input, 1.8V Vin.

Receiver Performance

Consitivity	Tracking :	-163dBm	
Sensitivity	Autonomous acquisition :	-160 dBm	
	Cold Start – Autonomous	< 35s	
	Colu Start – Autonomous	<15s (with CGEE)	
Time-To-First-Fix ¹	Warm Start – Autonomous ²	< 35s	
		< 15s(with CGEE)	
	Hot Start – Autonomous ³	< 1s	
Horizontal Position Accuracy ⁴	Autonomous	< 2.5m	
Velocity Accuracy ⁵	Speed	< 0.01 m/s	
	Heading	< 0.01 degrees	
Reacquisition	0.1 second, average		
Update Rate	1 Hz / 5 Hz		
Maximum Altitude	< 18,000 meter		
Maximum Velocity	< 515 meter/ second		
Maximum Acceleration	< 4G		

<Note>

1. 50% -130dBm Fu 0.5ppm Tu ±2s Pu 30Km

2. Commanded Warm START

3. Commanded Hot START

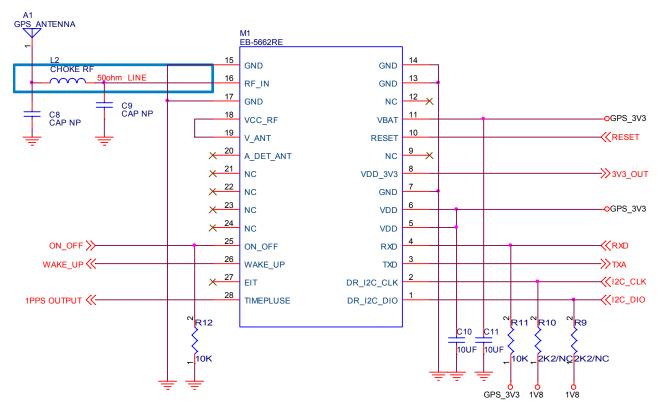
4. 50% 24hr static, -130dBm

5. 50% @ 30m/s

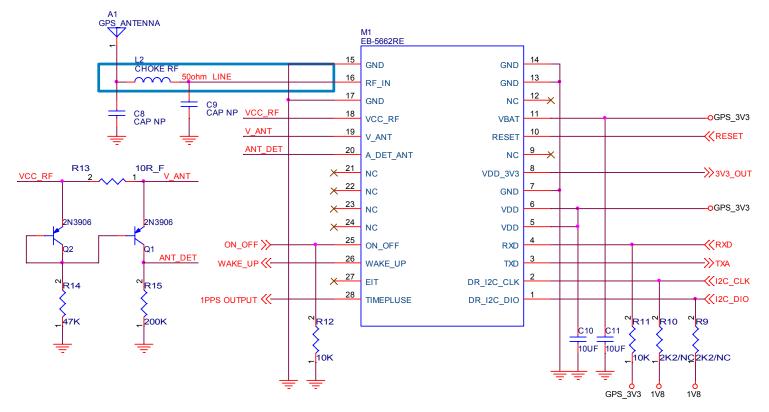
Environmental Characteristics

Parameter	Min	Тур	Max	Unit
Humidity Range	5		95	% non-condensing
Operation Temperature	-40	25	85	°C
Storage Temperature	-40		85	°C

Package Dimensions



Туре	28-pin stamp holes
Dimensions	22.4 mm * 17 mm * 3.0 mm ±0.2mm



Application

Application Circuit without ANTENNA Detect Function

Application Circuit with EXT Antenna Detect Function

GPS Active Antenna Specifications (Recommendation)

Frequency:	1575.42 + 2MHz	Amplifier Gain:	18~22dB Typical
Axial Ratio:	3 dB Typical	Output VSWR:	2.0 Max.
Output Impedance:	50Ω	Noise Figure:	2.0 dB Max
Polarization:	RHCP	Antenna Input Voltage:	2.85V (Typ.)

NOTE:

- 1. RESET: Low Active, when EB-5662RE is accepted this single, EB-5662RE going to Hibernate mode. If want EB-5662RE up, need input ON_OFF single.
- 2. TIMEPLUSE: One pulse per second output. When EB-5662RE is 3D Fixed, this pin will output 1uS Hi level pulse. If don't use this, just NC.
- 3. WAKE_UP: EB-5662RE power on, WAKE_UP will output 1.8V.
- 4. ON_OFF: This pin is controlled EB-5662RE power on. If EB-5662RE want to EB-662 pin to pin compactable, please ON_OFF connect to WAKE_UP. If don't use this, just NC.
- 5. DR I2C interface: The I2C interface supports required sensor instruments such as gyros, accelerometers, compasses or other sensors that can operate with an I2C bus. If don't use this, just NC.
- VBAT: This is the battery backup power input for the SRAM and RTC when main power is removed. VBAT is 2V ~ 3.5V.
- 7. EB-5662RE RF is has 3.3V external POWER to active ANTENNA use.

OPERATING Description

VCC

This is the main power supply to the engine board. (3.1Vdc to 3.5Vdc)

GND

This is Ground pin for the baseband circuit.

RXD

This is the main channel for receiving software commands from SiRFdemo software or from your proprietary software.

TXD

This is the main transmits channel for outputting navigation and measurement data to user's navigation software or user written software. Output is TTL level, 0V ~ 2.85V.

DR I2C Interface

The I2C host port interface supports:

Operation up to 400kbps

Individual transmit and receive FIFO lengths of 64B

The default I2C address values are: Rx: 0x60 Tx: 0x62

Multi-master I2C mode is supported by default. Dead reckoning applications support the DR I2C interface. The I2C interface supports required sensor instruments such as gyros, accelerometers, compasses or other sensors that can operate with an I2C bus.

DRI2C interface supports:

Typical data lengths (command + in/data out) of several bytes

Standard I2C bus maximum data rate 400kbps Minimum data rate 100kbps

RF_IN

This pin receives signal of GPS analog via external active antenna. It has to be a controlled impedance trace at 50ohm. Do not have RF traces closed the other signal path and routing it on the top layer. Keep the RF traces as short as possible.

VBAT

This is the battery backup power input for the SRAM and RTC when main power is off. Without the external backup battery, EB-5662RE will always execute a cold star after turning on. To achieve the faster start-up offered by a hot or warm start, a battery backup must be connected. The battery voltage should be between 2.0V and 3.5V.

VDD3V3OUT

This PIN is output voltage 3.3V. If do not use it, Just NC.

ON_OFF

The ON_OFF pin commands the EB-5662RE ON or OFF. There are multiple methods of connecting this pin for different applications in order to minimise host resource requirements.

The ON_OFF pin is used to command the EB-5662RE to turn on or off:

- The turn on command is a hardware feature of the Power Control FSM based on sensing a rising edge on the pin.
- The turn off command is a software feature based on interrupts related to rising and/or falling edges and/ or sensing of pin levels. (Not currently

supported.)

The ON_OFF pin processing is carried out by the Power Control FSM. The ON_OFF rising edge event during low power modes is recorded in a status register that is subsequently read by the processor once it is running. When the processor is running at the time of an ON_OFF event, the processor can poll the status or set-up an interrupt.

WAKE_UP

System power controller, when EB-5662RE Power ON, this pin will output 1.8V_{dc}.

NC

EB-5662RE reserves pin, Just NC.

VCC_RF

VCC_RF can supply Active Antenna Bias voltage. This pin will supply Active Antenna power. If do not use it, Just NC.

RESET

This pin is input low active. This Module has internal Power on Reset circuit.

V_ANT

V_ANT is Active Antenna Bias voltage input.

If you use Active Antenna, you can connect this pin to VCC_RF or connect other POWER (Vin = $2.8V \sim 5V$). If you will be use Passive Antenna, Just NC.

V-ANT_DET

This pin is Active Antenna detect signal input, when this pin is accept low level, EB-5662RE will be output MNEA command:

\$GPANT,ANTSTAUS=OK*16<CR><LF>

OR do not receive signal, to be output MNEA command:

\$GPANT,ANTSTAUTS=OPEN*06<CR><LF>

If Active Antenna is damage ,and short to gnd. EB-5662RE will to be output MNEA command:

\$GPTXT,01,01,02,ANTSTATUS=SHORT*6D

EXTINT0

This PIN is External Interrupt, If do not use it, Just NC.

TIMEPLUSE

This pin provides one pulse-per-second output from the board, which is synchronized to GPS time. This is not available in Trickle Power mode. If do not use it, Just NC.

SOFTWARE COMMAND

NMEA Output Command

GGA - Global Positioning System Fixed Data

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description

Table B-2 contains the values for the following example:

\$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M,-34.2,M,,0000*18

Table B-2 GGA Data Format

			1
Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Time	161229.487		hhmmss.sss
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	Ν		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table B-3
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	
Units	М	meters	
Geoid Separation ¹	-34.2	meters	Geoid-to-ellipsoid separation.
			Ellipsoid altitude=MSL Altitude + Geoid
			Separation
Units	М	meters	
Age of Diff. Corr.		second	Null fields when DGPS is not used
Diff. Ref. Station ID	0000		
Checksum	*18		
<cr><lf></lf></cr>			End of message termination

Table B-3 Position Fix Indicator

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode , fix valid
3	Not supported
6	Dead Reckoning Mode, fix valid

Note:

A valid status is derived from all the parameters set in the software. This includes the minimum number of satellites required, any DOP mask setting, presence of DGPS corrections, etc. If the default or current software setting requires that a factor is met, then if that factor is not met the solution will be marked as invalid.

GLL - Geographic Position-Latitude/Longitude

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description

Table B-4 contains the values for the following example:

\$GPGLL,3723.2475,N,12158.3416,W,161229.487,A,A*41

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	n		N=north or S=south
Longitude	12158.3416		dddmm.mmm
E/W Indicator	W		E=east or W=west
UTC Position	161229.487		hhmmss.sss
Status	A		A=data valid or V=data not valid
Mode	A		A=Autonomous, D=DGPS,
			E=DR
			N=Output Data Not Valid
			R= Coarse Position ¹
			S=Simulator
Checksum	*41		
<cr><lf></lf></cr>			End of message termination

Table B-4 GLL Data Format

1. Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

GSA - GNSS DOP and Active Satellites

Table B-5 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15,,,,,,1.8,1.0,1.5*33

Table B-5 GSA Data Format

Name	Example	Units	Description
Message ID	\$GPGSA		GSA protocol header
Mode 1	A		See Table B-6
Mode 2	3		See Table B-7
Satellite Used ¹	07		Sv on Channel 1
Satellite Used ¹	02		Sv on Channel 2
Satellite Used ¹			Sv on Channel 12
PDOP ²	1.8		Position dilution of Precision
HDOP ²	1.0		Horizontal dilution of Precision
VDOP ²	1.5		Vertical dilution of Precision
Checksum	*33		
<cr><lf></lf></cr>			End of message termination

1. Satellite used in solution.

2. Maximum DOP value reported is 50. When 50 is reported, the actual DOP may be much larger.

Table B-6 Mode1

Value	Description	
М	Manual-forced to operate in 2D or 3D mode	
A	2Dautomatic-allowed to automatically switch 2	

Table B-7 Mode 2

Value	Description
1	Fix Not Available
2	2D (<4 SVs used)
3	3D (>3 SVs used)

GSV - GNSS Satellites in View

Table B-8 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42*71

\$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42*41

Table B-8 GSV Data Fo	rmat		
Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of Messages ¹	2		Range 1 to 3
Message Number ¹	1		Range 1 to 3
Satellites in View ¹	07		
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Maximum90)
Azimuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR(C/No)	42	dBHz	Range 0 to 99, null when not tracking
Satellite ID	27		Channel 4 (Range 1 to 32)
Elevation	27	Degrees	Channel 4(Maximum90)
Azimuth	138	Degrees	Channel 4(True, Range 0 to 359)
SNR(C/No)	42	dBHz	Range 0 to 99,null when not tracking
Checksum	*71		
<cr><lf></lf></cr>			End of message termination

Table B-8 GSV Data Format

1. Depending on the number of satellites tracked, multiple messages of GSV data may be required. In some software versions, the maximum number of satellites reported as visible is limited to 12, even though more may be visible.

RMC - Recommended Minimum Specific GNSS Data

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description

Table B-9 contains the values for the following example:

\$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,309.62,120598,,,A*10

Table B-9 RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTC Time	161229.487		hhmmss.sss
Status ¹	A		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmm
N/S Indicator	Ν		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	knots	
Course Over Ground	309.62	degrees	True
Date	120598		ddmmyy
Magnetic Variation ²		degrees	E=east or W=west
East/West Indicator ²	E		E=east
Mode	A		A=Autonomous, D=DGPS,
			E=DR
			N=Output Data Not Valid
			R= Coarse Position ³
			S=Simulator
Checksum	*10		
<cr><lf></lf></cr>			End of message termination

1. A valid status is derived from all the parameters set in the software. This includes the minimum number of satellites required, any DOP mask setting, presence of DGPS corrections, etc. If the default or current software setting requires that a factor is met, then if that factor is not met the solution will be marked as invalid.

- 2. SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions relative to true North.
- 3. Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

VTG - Course Over Ground and Ground Speed

Note – Fields marked in italic *red* apply only to NMEA version 2.3 (and later) in this NMEA message description

Table B-10 contains the values for the following example:

\$GPVTG,309.62,T,,M,0.13,N,0.2,K,A*23

Name	Example	Units	Description
		Unito	•
Message ID	\$GPVTG		VTG protocol header
Course	309.62	degrees	Measured heading
Reference	Т		True
Course		degrees	Measured heading
Reference	М		Magnetic ¹
Speed	0.13	knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	Km/hr	Measured horizontal speed
Units	K		Kilometers per hour
Mode	A		A=Autonomous, D=DGPS,
			E=DR
			N=Output Data Not Valid
			R= Coarse Position ²
			S=Simulator
Checksum	*23		
<cr><lf></lf></cr>			End of message termination

Table B-10 VTG Data Format

1. SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

2. Position was calculated based on one or more of the SVs having their states derived from almanac parameters, as opposed to ephemerides.

ZDA - Time and Date

This message is included only with systems which support a time-mark output pulse identified as "1PPS". Outputs the time associated with the current 1PPS pulse. Each message is output within a few hundred ms after the 1PPS pulse is output and tells the time of the pulse that just occurred.

Table B-11 contains the values for the following example:

\$GPZDA,181813,14,10,2003,,*4F<CR><LF>

Name	Example	Unit	Description
Message ID	\$GPZDA		ZDA protocol header
			The UTC time units are:
			hh=UTC hours from 00 to 23 mm=UTC minutes
			from 00 to 59 ss=UTC seconds from 00 to 59 Either
			using valid IONO/UTC or estimated from default
UTC Time	181813	hhmmss	leap seconds
Day	14		Day of the month, range 1 to 31
Month	10		Month of the year, range 1 to 12
Year	2003		Year
Local zone hour ¹		hour	Offset from UTC (set to 00)
Local zone minutes ¹		minute	Offset from UTC (set to 00)
Checksum	*4F		
<cr><lf></lf></cr>			End of message termination

Table B-11: ZDA Data Format

1. Not supported by CSR, reported as 00.

NMEA Input Command

A). Set Serial Port ID: 100 Set PORTA parameters and protocol

This command message is used to set the protocol (SiRF Binary, NMEA, or USER1) and/or the communication parameters (baud, data bits, stop bits, parity). Generally, this command would be used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. For example, to change navigation parameters. When a valid message is received, the parameters will be stored in battery backed SRAM and then the receiver will restart using the saved parameters.

Format:

\$PSRF100,<protocol>,<baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF>

<protocol></protocol>	0=SiRF Binary, 1=NMEA, 4=USER1
<baud></baud>	1200, 2400, 4800, 9600, 19200, 38400
<databits></databits>	8,7. Note that SiRF protocol is only valid f8 Data bits
<stopbits></stopbits>	0,1
<parity></parity>	0=None, 1=Odd, 2=Even

Example 1: Switch to SiRF Binary protocol at 9600,8,N,1 \$PSRF100,0,9600,8,1,0*0C<CR><LF>

Example 2: Switch to User1 protocol at 38400,8,N,1

\$PSRF100,4,38400,8,1,0*38<CR><LF>

**Checksum Field: The absolute value calculated by exclusive-OR the 8 data bits of each character in the Sentence, between, but excluding "\$" and "*". The hexadecimal value of the most significant and least significant 4 bits of the result are converted to two ASCII characters (0-9, A-F) for transmission. The most significant character is transmitted first.

**<CR><LF> : Hex 0D 0A

B). Navigation Initialization ID : 101 Parameters required for start

This command is used to initialize the module for a warm start, by providing current position (in X, Y, Z coordinates) ,clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters will enable the receiver to acquire signals more quickly, and thus, produce a faster navigational solution.

When a valid Navigation Initialization command is received, the receiver will restart using the input parameters as a basis for satellite selection and acquisition.

Format :

\$PSRF101,<X>,<Y>,<Z>,<ClkOffset>,<TimeOfWeek>,<WeekNo>,<chnlCount>,<ResetCfg>*CK
SUM<CR><LF>

X coordinate position
INT32
Y coordinate position
INT32
Z coordinate position
INT32
Clock offset of the receiver in Hz, Use 0 for last saved value if available. If
this is unavailable, a default value of 75000 for GSP1, 95000 for GSP 1/LX
will be used.
INT32
GPS Time Of Week
UINT32
GPS Week Number
UINT16
(Week No and Time Of Week calculation from UTC time)
Number of channels to use.1-12. If your CPU throughput is not high enough,
you could decrease needed throughput by reducing the number of active
channels
UBYTE
bit mask
0×01=Data Valid warm/hot start=1
0×02=clear ephemeris warm start=1
0×04=clear memory. Cold start=1
UBYTE

Example: Start using known position and time.

\$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*7F

C). Set DGPS Port ID: 102 Set PORT B parameters for DGPS input

This command is used to control Serial Port B that is an input only serial port used to receive RTCM differential corrections.

Differential receivers may output corrections using different communication parameters. The default communication parameters for PORT B are 9600Baud, 8data bits, 0 stop bits, and no parity. If a DGPS receiver is used which has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters will be stored in battery backed SRAM and then the receiver will restart using the

saved parameters.

Format:

\$ PSRF102,<Baud>,<DataBits>,<StopBits>,<Parity>*CKSUM<CR><LF>

<baud></baud>	1200,2400,4800,9600,19200,38400
<databits></databits>	8
<stopbits></stopbits>	0,1
<parity></parity>	0=None, Odd=1,Even=2
E	

Example: Set DGPS Port to be 9600,8,N,1 \$ PSRF102,9600,8,1.0*12

D). Query/Rate Control ID: 103 Query standard NMEA message and/or set output rate

This command is used to control the output of standard NMEA message GGA, GLL, GSA, GSV, RMC, VTG. Using this command message, standard NMEA message may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery backed memory for each entry when the message is accepted.

Format:

\$ PSRF103,<msg>,<mode>,<rate>,<cksumEnable>*CKSUM<CR><LF>

<msg></msg>	0=GGA,
	1=GLL,
	2=GSA,
	3=GSV,
	4=RMC,
	5=VTG
	6=MSS(if internal beacon is supported)
	7=Not defined
	8=ZDA(if 1PPS output supported)
	9=Not defined
<mode></mode>	0=SetRate
	1=Query
	2=ABP On
	3=ABP Off
<rate></rate>	Output every <rate>seconds, off=0,max=255</rate>
<cksumenable></cksumenable>	0=disable Checksum,1=Enable checksum for specified message

Example 1: Query the GGA message with checksum enabled

\$ PSRF103,00,01,00,01*25

Example 2: Enable VTG message for a 1Hz constant output with checksum enabled \$ PSRF103.05.00.01.01*20

Example 3: Disable VTG message \$ PSRF103,05,00,00,01*21

E). LLA Navigation Initialization ID: 104 Parameters required to start using Lat/Lon/Alt

This command is used to initialize the module for a warm start, by providing current position (in Latitude, Longitude, Altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters will enable the receiver to acquire signals more quickly, and thus, will produce a faster navigational soution.

When a valid LLA Navigation Initialization command is received, the receiver will restart using the input parameters as a basis for satellite selection and acquisition.

Format:

\$ PSRF104,<Lat>,<Lon>,<Alt>,<ClkOffset>,<TimeOfWeek>,<WeekNo>,<ChannelCount>,
<ResetCfg>*CKSUM<CR><LF>

sition, assumed positive north of equator and negative south of
t, possibly signed
osition, it is assumed positive east of Greenwich and negative
enwich Float, possibly signed
ition float, possibly signed
t of the receiver in Hz, use 0 for last saved value if available. If
ailable, a default value of 75000 for GSP1, 95000 for GSP1/LX
Df Week
Number
channels to use. 1-12 UBYTE
Valid warm/hot starts=1
ephemeris warm start=1
memory. Cold start=1

Example: Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,922,12,3*37

F). Development Data On/Off ID: 105 Switch Development Data Messages On/Off

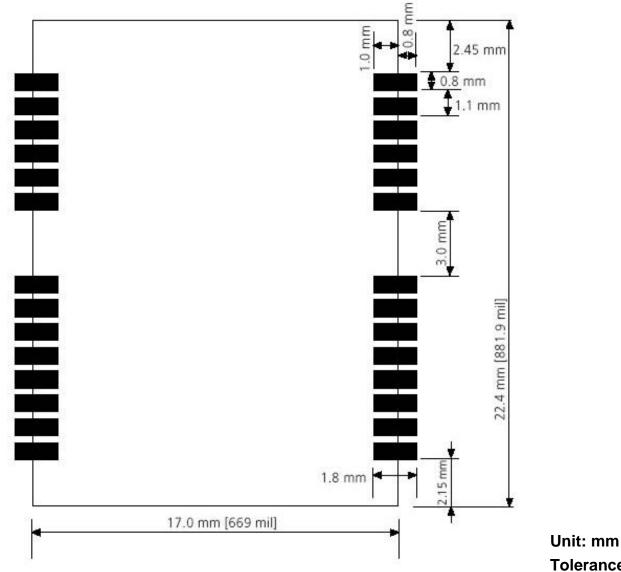
Use this command to enable development debug information if you are having trouble getting commands accepted. Invalid commands will generate debug information that should enable the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range. This setting is not preserved across a module reset.

Format:	\$ PSRF105, <debug>*CKSUM<cr><lf></lf></cr></debug>		
	<debug></debug>	0=Off, 1=On	
	Example: Debug On	\$ PSRF105,1*3E	
	Example: Debug Off	\$ PSRF105,0*3F	

G). Select Datum ID: 106 Selection of datum to be used for coordinate Transformations

GPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

Examples:


Datum select TOKYO_MEAN

\$PSRF106,178*32

Name	Example	Unit	Description
Message ID	\$PSRF106		PSRF106 protocol
			header
Datum	178		21=WGS84
			178=TOKYO_MEAN
			179=TOKYO_JAPAN
			180=TOKYO_KOREA
			181=TOKYO_OKINAWA
			Debug
Checksum	*32		
<cr><lf></lf></cr>			End of message
			termination

PCB Layout Recommend Recommended Layout PAD

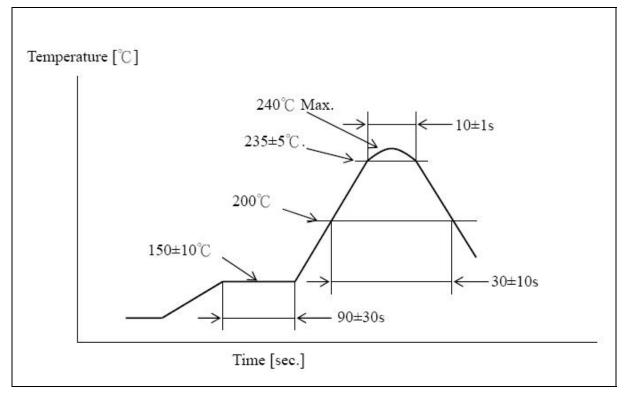
Tolerance: 0.1mm

PCB Layout Recommendations

Do not routing the other signal or power trace under the engine board.

RF:

This pin receives signal of GPS analog via external active antenna .It has to be a controlled impedance trace at 50ohm.


Do not place the RF traces close to the other signal path and not routing it on the top layer. Keep the RF traces as short as possible.

Antenna:

Keep the active antenna on the top of your system and confirm the antenna radiation pattern saxial ratios power gains noise figures VSWR are correct when you Setup the antenna in your case.

Recommended Reflow Profile:

Pre heating temperature: $150\pm10[^{\circ}C]$ Pre heating time: $90\pm30[sec.]$ Heating temperature: $235\pm5[^{\circ}C]$ Heating time: $10\pm1[sec.]$ Peak temperature must not exceed 240°C and the duration of over 200°C should be 30 ± 10 Seconds.

Appendix LABEL Artwork

A: Brand: GLOBALSAT B: MODULE Model: EB-5662RE GlobalSat B-1: R = UART, I = I2C I/FEB-5631RE SIRF IV E = Included EEPROM C: CHIP Type: SiRF IV D: Bar code E: Serial Number: 07CCD51 - Product NO (HEX) - Place of origin, T= Taiwan, C=China Product Month, 123456789XYZ, X->Oct,Y->Nov,Z->Dec - Product Year